Intransitive Würfel 1

M. N. DESHPANDE, INDIEN

Übersetzung: JOACHIM ENGEL, LUDWIGSBURG

Zusammenfassung: In diesem Aufsatz werden einige interessante Resultate über intransitive Würfel vorgestellt.

1 Einleitung

In diesem Aufsatz betrachten wir Würfel mit n Seitenflächen. Auf jeder Fläche steht eine Zahl (die Zahlen müssen nicht unbedingt verschieden sein). Die Wahrscheinlichkeiten aller Flächen sind gleich. Wir betrachten k Würfel W_1, W_2, \ldots, W_k und bezeichnen mit x_i das Resultat, wenn der i-te Würfel geworfen wird. ('Resultat' ist geeignet definiert, etwa als die Zahl auf der obersten Fläche). Wir sagen, dass W_i den Würfel W_j schlägt, wenn $x_i > x_j$.

Flächen hat, so dass diese eine Menge von n intransitiven Würfel bilden? Die Antwort ist 'Ja' und wir betrachten eine Lösung.

Natürlich muss $n \ge 3$ sein, da es keine zwei Würfel mit nur zwei Seiten (d.h. also Münzen) gibt, die eine intransitive Menge bilden. Bevor wir den allgemeinen Fall betrachten, geben wir eine Lösung für n = 3,4,5 und 6:

n=3		Würfel	
	1	2	3
Zahl auf	3	2	1
Fläche	5	4	7
	6	9	8

Definition

Die Menge W_1, W_2, \dots, W_k ist eine Menge von intransitiven Würfeln, wenn

- (i) $P(W_i \text{ schlägt } W_{i+1}) > 1/2 \text{ für } i = 1, 2, ..., k-1 \text{ und}$
- (ii) $P(W_k \text{ schlägt } W_1) > 1/2$.

n=4	Würfel				
	1	2	3	4	
Zahl auf	4	3	2	1	
Fläche	7	6	5	11	
	9	8	13	12	
	10	16	15	14	

Illustration

Das folgende ist ein bekanntes Beispiel von drei intransitiven Würfel:

		Würfel	
	1	2	3
Zahl auf	4	2	1
Fläche	4	2	1
	5	3	7
	5	3	7
	6	9	8
	6	9	8

Wir diskutieren jetzt ein allgemeineres Problem und stellen eine Lösung vor.

n = 5		Würfel					
	1	2	3	4	5		
Zahl auf	5	4	3	2	1		
Fläche	9	8	7	6	16		
	12	11	10	18	17		
	14	13	21	20	19		
	15	25	24	23	22		

n=6		Würfel				
Zahl auf	6	5	4	3	2	1
Fläche	11	10	9	8	7	22
	15	14	13	12	24	23
	18	17	16	27	26	25
	20	19	31	30	29	28
	21	36	35	34	33	32

2 Verallgemeinerung

Wir betrachten nun folgendes Problem: Ist es möglich n Würfel zu haben, wobei jeder Würfel n

¹Übersetzung aus Teaching Statistics, 2000 (1), 4-5

Für diese Würfel ist leicht nachzuprüfen:

		Würfel-Nummer							
		1	2	3		n-3	n-2	n-1	n
	1	n	n-1	n-2		4	3	2	1
	2	2n - 1	2n - 2	2n - 3		n+3	n+2	n+1	$T_n + 1$
Zahl	3	3n - 3	3n - 4	3n - 5		2n + 1	2n	$T_n + 3$	$T_n + 2$
	4	4n - 6	4n - 7	4n - 8		3n - 2	$T_n + 6$	$T_n + 5$	$T_{n} + 4$
	5	5n - 10	5n - 11	5n - 12		$T_n + 10$	$T_n + 9$	$T_n + 8$	$T_n + 7$
		• • •							
	n	T_n	n^2	$n^2 - 1$		$n^2 - n + 5$	$n^2 - n + 4$	$n^2 - n + 3$	$n^2 - n + 2$

Tab. 1:

(1)
$$n = 3$$
: $P(W_i \text{ schlägt } W_{i+1}) = 5/9 \text{ für } i = 1, 2$
 $P(W_3 \text{ schlägt } W_1) = 6/9$

(2)
$$n = 4$$
: $P(W_i \text{ schlägt } W_{i+1}) = 9/16, i = 1, 2, 3$
 $P(W_4 \text{ schlägt } W_1) = 12/16$

(3)
$$n = 5$$
: $P(W_i \text{ schlägt } W_{i+1}) = 14/25, i = 1, 2, 3, 4$
 $P(W_5 \text{ schlägt } W_1) = 20/25$

(4)
$$n = 6$$
: $P(W_i \text{ schlägt } W_{i+1}) = 20/36, i = 1, ..., 5$
 $P(W_6 \text{ schlägt } W_1) = 30/36$

Betrachtungen dieser Lösungen führen uns zu einer allgemeinen Konstruktion von n intransitiven Würfeln mit n Flächen, wie in Tabelle 1 angezeigt. Es bezeichne a_{ij} die Zahl auf der i-ten Fläche des j-ten Würfels. Dann ist die Konstruktion wie folgt:

$$a_{ij} = \left\{ \begin{array}{l} in+1 - D_{i-1} - j, \ \text{für} \ i+j \leq n+1 \\ D_n + D_{i-2} + n+1 - j, \ \text{für} \ i+j > n+1 \end{array} \right.$$

wobei die D_k die Dreieckszahlen bezeiche ($D_0 = 0, D_1 = 1, D_2 = 3, D_3 = 6, D_4 = 10, D_5 = 15$ usw.; allgmein: $D_k = D_{k-1} + k$).

Man sieht leicht, dass

$$P(W_i \text{ schlägt } W_{i+1}) = (D_n - 1)/n^2, i = 1, \dots n - 1$$

und

$$P(W_n \text{ schlägt } W_1) = 1 - 1/n.$$

Für $n \ge 3$ sind die obigen Wahrscheinlichkeiten alle größer 1/2, so dass die Würfel intransitiv sind.

Weitere Fragen bleiben noch offen:

- Ist die Lösung eindeutig?
- In dieser Lösung werden die Zahlen $1, 2, 3, ..., n^2$ verwendet. Kann eine Lösung auch mit weniger Zahlen erreicht werden?

Anmerkung des Übersetzers:

- Ein Beispiel für vier intrasitive Würfel mit sechs Seiten findet sich in dem Buch Stochastik von Arthur Engel aus dem Jahr 1989 (S. 26).
- 2. Im Heft 2000 (3) von *Teaching Statistics* beantwortet derselbe Autor die letzte der beiden offenen Fragen konstruktiv. Man betrachte n Würfel mit folgenden Zahlen auf ihren n Seiten: auf dem i-ten Würfel steht auf n-i+1 Seiten die Zahl n-i+1, während auf den verbleibenden i-1 Seiten die Zahl 2n-i+1 steht. Diese bilden eine Menge von n intransitiven Würfeln, wie sich leicht nachprüfen lässt.

Anschrift des Verfassers M. N. Deshpande Institute of Science Nagpur Indien