XI. ÜBUNG zu GRUNDZÜGE der ALGEBRA

<u>Abgabe:</u> MI, 17. JAN. 2007, 11:00 UHR in den orangen Kasten Nr. 8 http://math-www.upb.de/~dirk/Vorlesungen/GZ-Algebra/

Bitte geben Sie außer Ihrem Namen auch deutlich die Übungsgruppe mit an.

- **32. Aufgabe:** Es soll gezeigt werden, dass es keine einfache Gruppe der Ordnung 144 gibt. Man nehme dazu im folgenden an, dass G einfach ist mit |G| = 144. Natürlich ist G dann nicht abelsch.
 - a) Man zeige: $\alpha(2) = 9$ und $\alpha(3) = 16$.
- b) Man zeige: Es gibt zwei 3-Sylowgruppen P und Q von G, so dass $P \cap Q = T$ die Ordnung 3 hat.
- c) Es sei N(T) der Normalisator von T in G. (Also, $N(T) = \{g \in G \mid gTg^{-1} = T\}$.) Man zeige: $P \cup Q \subseteq N(T)$ und folgere |N(T)| = 18, 36, 72 oder 144.
- d) Man schließe |N(T)|=144 aus. (HINWEIS: Warum die Bezeichnung Normalisator?)
- e) Man schließe |N(T)|=18 aus. (HINWEIS: Wieviele 3-Sylowgruppen hat eine Gruppe der Ordnung 18?)
- f) Man führe auch die Fälle |N(T)|=36,72 zum (gewünschten) Widerspruch. (HINWEIS: Man wende den Satz von Poincaré an.) 12 P.
- **33.** Aufgabe: Sei $n \geq 5$. Es darf (und soll) verwendet werden, dass die Gruppe S_n ein triviales Zentrum hat (vgl. Übungen.)
- a) Sei $\varphi: S_n \longrightarrow \mathbb{Z}_2$ ein nicht-trivialer Gruppenhomomorphismus. Man zeige: $\varphi = \operatorname{sgn}$ (Signatur). (HINWEIS: Man betrachte die Einschränkung $\varphi_{|A_n}: A_n \longrightarrow \mathbb{Z}_2$.)
- b) Man zeige: Die einzige Untergruppe in S_n vom Index 2 ist die A_n . (HINWEIS: Gelte $[S_n:U]=2$. Man betrachte $\nu:S_n\longrightarrow S_n/U,\ \sigma\mapsto U\sigma$.)
- c) Man zeige: Die einzigen Normalteiler in S_n sind $\{1\}$, S_n und A_n . (HINWEIS: Sei N Normalteiler in S_n . Man betrachte $N \cap A_n$.)

- **34.** Aufgabe: Wir betrachten die alternierende Gruppe A_4 (der Ordnung 12), und die natürliche Aktion von A_4 auf der Menge $X = \{1, 2, 3, 4\}$.
- a) Man zeige, dass die Standuntergruppen $\mathrm{St}(x)$ gerade die vier Untergruppen von A_4 der Ordnung 3 sind.
- **b)** Man zeige, dass A_4 keine Untergruppe der Ordnung 6 besitzt. (HINWEIS: Eine solche wäre Normalteiler und enthielte eine Untergruppe der Ordnung 3. Verwende Teil a).)