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1. Introdution

This artile is onerned with the geometry of the parametrizing sets X

of separating tubular families of tame hereditary algebras and of anoni-

al algebras of tubular type. Impliitly the geometrial struture of these

parametrizing sets is ompletely known sine they are just the exeptional

urves introdued by Lenzing [13℄ (see also [14℄). Suh an exeptional urve

X is de�ned via its assoiated ategory of oherent sheaves ohX. But an

expliit desription of the geometry over arbitrary base-�elds is unknown.

For algebraially losed base-�elds an expliit desription is possible and is

given by the projetive line with weighting (Geigle-Lenzing [5℄). But for

arbitrary base-�elds this is diÆult and unsolved.

The present artile treats the ase where the base-�eld is k = R, the

�eld of real numbers. The groundwork was laid by Dlab and Ringel who

desribed the parametrizing sets expliitly as topologial spaes [2, 16, 3, 4℄,

the geometry was desribed partially also by Crawley-Boevey [1℄. In [8, 9℄

a sublass of exeptional urves was desribed as projetive spetrum of

some expliit lass of ommutative graded fatorial algebras. In spite of

these works the problem was not ompletely solved. This will be done in

the present paper. As we will see the desription is essentially determined

funtion-theoretially.

The geometry of X is basially desribed by its automorphism group,

whih is de�ned as the subgroup of the group of all isomorphism lasses

of auto-equivalenes of the ategory ohX whih is generated by the auto-

equivalenes �xing the struture sheaf. It is surprising that these automor-

phisms also preserve metri struture of X. Moreover, there is one ase,

where there exists a so-alled ghost-automorphism of order two �xing all

points of X.

We desribe an algebrai method to alulate the automorphism group

of X. The problem of the determination of the automorphism group is ba-

sially redued to the homogeneous ase. As we will see, in this ase an

exeptional urve is the Riemann sphere �, or some quotient �=Z

2

of the

Riemann sphere modulo an involution, and possibly equipped with addi-

tional struture (alled olouring). We show that the automorphism group

up to ourrene of ghost-automorphisms oinides with the group of all
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onformal maps on �, whih are ompatible with formation of the quotient

and whih preserve the additional struture.

Moreover, we determine the automorphism group of the derived ategory.

We give lists of the automorphism groups in the domesti and tubular ases

and disuss the ourrene of parameters in these ases.

The author would like to thank Professor Helmut Lenzing for stimulating

disussions on the subjet.

2. Calulation tools

Throughout this artile let k = R be the �eld of real numbers. Let X be

an exeptional urve, and denote by H = ohX the assoiated ategory of

oherent sheaves. Let L be a line bundle in H (whih is uniquely determined

up to degree-shift, see below), whih we all struture sheaf. Denote by

AutH = Aut oh(X) the group of isomorphism lasses of auto-equivalene

of H, alled the automorphism group of H (more preisely: automorphism

lass group, but we use the shorter notion). The subgroup of AutH indued

by those automorphisms �xing the struture sheaf L is denoted by AutX

and alled the automorphism group of X.

Two exeptional urves X and X

0

are alled isomorphi if there is an

equivalene ohX �! ohX

0

; we will see that in this ase (over k = R) there

is even an equivalene sending the struture sheaf L of X to the struture

sheaf L

0

of X

0

.

Eah exeptional urve arises by insertion of weights at �nitely many

points for some homogeneous exeptional urve [13℄. The following proposi-

tion is not hard to prove (ompare [15℄).

Proposition 1. Let X be an exeptional urve with underlying homoge-

neous exeptional urve X suh that X arrises from X by insertion of weights

p

1

; : : : ; p

t

into the distint points x

1

; : : : ; x

t

, respetively. Then AutX an be

identi�ed with the subgroup of elements in AutX whih preserve weights.

Let M =

F

M

G

be a bimodule over the skew-�elds F and G, k ating en-

trally, with all data �nite-dimensional over k. We always assumeM 6= 0. De-

�ne the group AutM = Aut

k

(

F

M

G

) to be the set of all triples ('

F

; '

M

; '

G

),

where '

F

2 Aut

k

(F ), '

G

2 Aut

k

(G), '

M

: M �! M is k-linear and bije-

tive, and for all f 2 F , g 2 G and m 2M we have

'

M

(fmg) = '

F

(f)'

M

(m)'

G

(g):

Composition and inverse are built omponentwise, the neutral element is

given by (1

F

; 1

M

; 1

G

). Note, that projetion onto the middle omponent,

('

F

; '

M

; '

G

) 7! '

M

is injetive. There is an alternative desription: Con-

sider the k-ategory onsisting of two objets with endomorphism ring F

and G, respetively, and with non-zero Hom-spae only in one diretion,

whih is given by M . Then an automorphism of the bimodule M is just a

k-self-equivalene of this ategory.

An element ('

F

; '

M

; '

G

) 2 AutM is alled inner, if there are f 2 F

�

,

g 2 G

�

suh that for all x 2 F , y 2 G, m 2 M we have '

F

(x) = f

�1

xf ,
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'

G

(y) = g

�1

yg and '

M

(m) = f

�1

mg. The subgroup of all inner automor-

phisms is denoted by InnM = Inn

k

(

F

M

G

), the fator group by OutM =

Out

k

(

F

M

G

) = AutM= InnM:

Eah element ('

F

; '

M

; '

G

) 2 AutM de�nes a k-algebra automorphism on

the hereditary algebra � :=

�

G 0

M F

�

in the obvious way; then, the triple is

inner if and only if the indued k-algebra automorphism is inner.

Proposition 2. Let X be a homogeneous exeptional urve with underlying

tame bimodule M =

F

M

G

. Then

AutX ' OutM:

Proof. Denote by L the indeomposable bundle suh that there is an ir-

reduible map from L to L. Then M = Hom(L; L). Let ' be an auto-

equivalene of H = ohX �xing the struture sheaf L. Then ' also �xes

L. Therefore, by restrition ' indues an auto-equivalene of the full sub-

ategory fL; Lg, hene an element of AutM . Moreover, the funtor ' is

isomorphi to the identity if and only if the indued automorphism on the

bimodule is inner.

Conversely, any element ' in AutM indues an automorphism of the

bimodule algebra �, hene gives an auto-equivalene of mod(�), hene also

of D

b

(�), and sine D

b

(�) = D

b

(X) this �nally indues an auto-equivalene of

H �xing L. Moreover, ' is inner if and only if the indued funtor on mod(�)

is isomorphi to the identity. These onstrutions are mutually inverse. �

3. The projetive spetra and the Riemann sphere

Let X be a homogeneous exeptional urve over the real numbers. There

are (up to duality) �ve ases of underlying tame bimodulesM , namely M =

R

H

H

,

R

R

R

�

R

R

R

,

C

C

C

�

C

C

C

,

H

H

H

�

H

H

H

or

C

C

C

�

C

C

C

, where in the last ase

C is ating on the seond omponent via onjugation. In these ases we have

oh(X) '

mod

Z

(R)

mod

Z

0

(R)

, the quotient ategory modulo the Serre subategory of

Z-graded modules of �nite length, where R is one of the following Z-graded

algebras, respetively: R[X; Y; Z℄=(X

2

+Y

2

+Z

2

), R[X; Y ℄, C [X; Y ℄, H [X; Y ℄

or C [X; Y ℄, where here Y � = �Y for � 2 C . In eah ase X is the projetive

spetrum of R. These \projetive oordinate algebras" are graded fatorial

in the sense that eah graded prime ideal in R of height one is generated by

some homogeneous normal element, alled prime element. Moreover, R is

�nitely generated as module over its enter. In partiular, eah line bundle

is up to isomorphism of the form L(n), where L(n) is the image of R(n)

(degree-shift by n) in the quotient ategory.

We desribe the projetive spetra: We list generators of the homogeneous

prime ideals of height one, then the endomorphism skew-�eld of the orre-

sponding simple sheaf and then the so-alled symbol data (whih we will

need and explain below). (Compare also [4℄.) In the sequel, a point x 2 X

is alled real, omplex or quaternion, respetively, if the endomorphism ring
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End(S

x

) of the simple sheaf onentrated in x is isomorphi to R, C or H ,

respetively. This de�nes the olouring on X.

1.) R[X; Y; Z℄=(X

2

+ Y

2

+ Z

2

) = R[x; y; z℄.

� ax+ by + z (a; b; ) 6= (0; 0; 0); C ;

�

1

1

�

.

Hene X an be identi�ed with S

2

=�1, the 2-sphere modulo antipodal points.

This is homeomorphi to P

1

(C )=Z

2

, the Riemann sphere modulo the �xed-

point free involution (given by z 7! �1=�z on P

1

(C )). There are no real

points.

2.) R[X; Y ℄.

� X, Y + �X � 2 R; R;

�

1

1

�

.

� (Y + zX)(Y + �zX) z 2 C n R; C ;

�

2

2

�

.

Hene X = P

1

(C )=Z

2

(identifying X, Y + �X, (Y + zX)(Y + �zX) with the

lass of 1, �, z, respetively) where here Z

2

is generated by the involution

(given by z 7! �z) having �xed points ( = real points). We have two regions,

the boundary (= real points) having symbol data

�

1

1

�

and the inner points

are omplex having symbol data

�

2

2

�

.

3.) C [X; Y ℄.

� X, Y + zX z 2 C ; C ;

�

1

1

�

.

Here, X = P

1

(C ), the Riemann sphere.

4.) H [X; Y ℄.

� X, Y + �X � 2 R; H ;

�

1

1

�

.

� (Y + zX)(Y + �zX) z 2 C n R; C ;

�

2

1

�

.

Here X = P

1

(C )=Z

2

(as in ase 2.), but the boundary is oloured quaternion.

5.) C [X; Y ℄.

� X, Y ; C ;

�

1

1

�

� Y

2

� �X

2

= (Y �

p

�X)(Y +

p

�X) 0 < � 2 R; R;

�

2

1

�

� Y

2

� �X

2

0 > � 2 R; H ;

�

2

2

�

� (Y

2

� zX

2

)(Y

2

� �zX

2

) z 2 C n R; C ;

�

4

2

�

.

In this ase, the points of X are in ono-to-one orrespondene with the ele-

ments of P

1

(C )=Z

2

(mappingX, Y , Y

2

��X

2

(0 6= � 2 R), (Y

2

�zX

2

)(Y

2

�

�zX

2

) (z 2 C n R) to the lass of 1, 0, �, z in P

1

(C )=Z

2

, respetively). The

boundary is oloured in a more interesting fashion as in the preeding ases

and is indiated in Figure 1.
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C

C

H

R

Figure 1

Let � be the Riemann sphere, so that eah X is of the form � (in ase 3.)

or �=Z

2

, where Z

2

is generated by an anti-automorphi involution � whih

has �xed-points (in ases 2., 4. and 5. with the di�erent olourings) forming

the boundary or no �xed-points (in ase 1.). In eah ase we de�ne the

group Aut

0

X onsisting of all onformal maps of the Riemann sphere �

whih in the ases di�erent from ase 3. ommutes with � and respets the

olourings. Note that the group of onformal maps of � is given by M�obius

transformations and the anti-automorphism z 7! �z, hene by PGL

2

(C ) oZ

2

(see [6℄). Then it is easy to see that in ases 1.{5. the group Aut

0

X is given

by, respetively, SO

3

(R), PGL

2

(R), PGL

2

(C )o Z

2

, PGL

2

(R) (see [6℄) and

R

+

oZ

2

, where in the last ase R

+

is the set of diagonal matries in PGL

2

(R)

with positive determinant (giving the M�obius transformations z 7! �z where

� > 0), and Z

2

is generated by the inversion I : z 7! 1=z.

4. Ation of automorphisms on X

Let X be homogeneous. Eah ' 2 AutX permutes the points of X. We

show that we get in this way a natural surjetive homomorphism of groups

� : AutX �! Aut

0

X:

If M = C � C , or M = C � C , then denote by  the element in OutM in-

dued by

�

x

y

�

7!

�

�x

�y

�

, and also the element in AutX (via the identi�ation

AutX = OutM) and all it omplex onjugation. Obviously, 

2

= 1, and

�() is the map indued by z 7! �z, whih is the identity in ase M = C � C ;

in this ase we all  ghost-automorphism.

Theorem 3. Let k = R be the �eld of real numbers. Let X be a homogeneous

exeptional urve. � is an isomorphism in the ases 1.{4., in the ase 5. it

is split surjetive and has kernel generated by .

Proof. We expliitly obtain AutX by alulating OutM for the underlying

bimodule M . The ases M = R � R and M = C � C easily give OutM '

PGL

2

(R) and OutM ' PGL

2

(C ) o hi, respetively. Let M =

R

H

H

. For

eah h 2 H

�

denote by �

h

the inner automorphism given by �

h

(x) = h

�1

xh

for all x 2 H . Eah ' 2 AutM has the form ' = (1; '; �

h

), where '(x) =

'(1)h

�1

xh. We obtain a surjetion H

�

o H

�

�! AutM with kernel 1o R

�

,
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hene AutM ' H

�

oH

�

=R

�

. Sine every inner automorphism of the bimodule

H is of the form x 7! �

�1

xg for some � 2 R

�

, g 2 H

�

, there is a surjetion

R

�

o H

�

�! InnM induing an isomorphism Inn H ' R

�

o H

�

=R

�

. Hene

OutM ' H

�

=R

�

' SO

3

(R). By the orrespondene of i, j, k 2 H = M

(where i

2

= �1 = j

2

, k = ij = �ji) to x, y, z in the projetive oordinate

algebra (as desribed in [9, 4.3℄), we get the isomorphism between AutX and

Aut

0

X in this ase.

Let M = H � H . Eah element in AutM is of the form (�

h

; '; �

h

0

). It is

easy to see that

�

x

y

�

7! h

�1

�

a b

 d

��

x

y

�

h

0

with

�

a b

 d

�

uniquely determined as element of PGL

2

(R) and h, h

0

2 H

�

are

all elements in AutM . Then OutM ' PGL

2

(R) follows immediately.

Finally, let M = C � C . It is easy to see that AutM is generated by the

subgroup U of matries

�

a 0

0 b

�

with a, b 2 C

�

, and by I =

�

0 1

1 0

�

and by

omplex onjugation . Moreover, InnM is given by the matries

�

ab 0

0 a

�

b

�

with a, b 2 C

�

. The surjetive map U �! R

+

,

�

a 0

0 b

�

7!

�

jaj 0

0 jbj

�

has

kernel InnM , hene OutM ' (R

+

o hIi)� hi.

In order to prove the theorem, one �nally heks that eah of the alulated

automorphisms ats on the point set of X in the \natural" way, that is, the

alulated matries are mapped onto the assoiated M�obius transformations;

only in ase M = C � C there is the exeption that the element

�

a 0

0 b

�

in

PGL

2

(R) with a, b > 0 yields the M�obius transformation z 7! a

2

z=b

2

giving

a bijetion from R

+

onto itself. �

As one surprising onsequene of the theorem we see that in aseM =

R

H

H

the geometri struture on X also ontains metri data. Namely, although

X is topologially idential to the real projetive plane P

2

(R), geometrially

X is di�erent from P

2

(R) equipped with the usual geometry, sine this leads

to the automorphism group PGL

3

(R); but AutX onsists just of those maps

preserving the metri struture (angles).

5. The automorphism group of the derived ategory

Let X be an exeptional urve whih is homogeneous with H = ohX.

Let M be the underlying tame bimodule of X and " its numerial type, that

is " = 1 if M is a (2; 2)-bimodule and " = 2 if M is a (1; 4)- or a (4; 1)-

bimodule. For eah x 2 X let S

x

be the simple sheaf onentrated in x,

and let f(x) =

1

"

� [Hom(L; S

x

) : End(L)℄, e(x) = [Hom(L; S

x

) : End(S

x

)℄,

and d(x) = f(x)e(x). We all

�

d(x)

f(x)

�

the symbol data of the point x.
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We have listed above the symbol data in all ases over the real numbers.

If we insert weights p

1

; : : : ; p

t

into the pairwise distint points x

1

; : : : ; x

t

(alled exeptional points or weighted points), then the Grothendiek group

of H = H

�

p

1

: : : p

t

x

1

: : : x

t

�

has the symbol

0

�

p

1

; : : : ; p

t

d

1

; : : : ; d

t

"

f

1

; : : : ; f

t

1

A

(ompare [13℄) where f

i

= f(x

i

), d

i

= d(x

i

) (i = 1; : : : ; t). Reall that rows

of the form 1; 1; : : : ; 1 are omitted and " only appears if " = 2. Exep-

tional urves an be lassi�ed by their symbols. For example, X is domesti

(tubular, wild, resp.) if the invariant

t

X

i=1

d

i

�

1�

1

p

i

�

�

2

"

is < 0, (= 0, > 0, resp.). In partiular, all domesti and tubular symbols

an be listed ([12℄).

Denote by �

i

: H �! H the shift-automorphism assoiated with the tube

U

x

i

(ompare [14℄) (i = 1; : : : ; t). Moreover, let x

0

2 X be suh that e(x

0

) =

1 = f(x

0

), and denote by �

0

: H �! H the indued shift-automorphism.

If X is an exeptional urve with sheaf ategoryH = ohX, then denote by

PiX the subgroup of AutH whih is generated by all shift-automorphisms;

it is generated by �

0

; �

1

; : : : ; �

t

. Denote by Pi

0

X the subgroup of PiX of

shifts of degree zero. Denote by AutD

b

(X) the group of isomorphism lasses

of auto-equivalenes of the triangulated ategory D

b

(X) = D

b

(H).

Lemma 4. Let X be an exeptional urve over the �eld of real numbers.

Then Pi(X) is ating simply transitive on the set of isomorphism lasses of

line bundles.

Proof. In the homogeneous ase, by graded fatoriality of the projetive o-

ordinate algebras as treated above, eah shift-automorphism is naturally

isomorphi to some degree-shift and eah line bundle is a shift of L. Us-

ing the p-yle onstrution in [13℄ it easily follows that we have natural

isomorphisms �

p

i

i

' �

d

i

0

(i = 1; : : : ; t), and then the assertion follows imme-

diately. �

Theorem 5. Let X be a tubular exeptional urve over the �eld R. Then

there is an exat sequene

1 �! Pi

0

X o AutX �! AutD

b

(X) �! V �! 1;

where V is the braid group B

3

on three strands or a subgroup of B

3

of index

3. More preisely, if s, l denote the generators of B

3

with de�ning relation

sls = lsl, then V = hl

n

; si where n is either 1 or 2.
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Case Symbol Parameter AutX

t

D 1 (p j 2) � R=2� o Z

2

T 1 (2 2 j 2) t 2 [0; 1)

D

4

t = 0

V

4

t 6= 0

Table 1. Domesti and tubular urves with M =

R

H

H

Remark 6. (1) The group Pi

0

X oinides with the torsion group of the

abelian group L(p;d) and is �nite. A list of the ourring groups an be

found in [11, Table 1℄, whih also gives preise information about the our-

ring exponent n of the generator l.

(2) In hl

2

; si there is the de�ning relation (l

2

s)

2

= (sl

2

)

2

.

Proof of (2). First observe that the subgroup of PSL

2

(Z) generated by the

matries L

2

=

�

1 0

�2 1

�

and S =

�

1 1

0 1

�

has de�ning relation (L

2

S)

2

= 1.

This an be proven by using a fundamental domain of this group (whih an

be found in [7℄), using the method desribed in [17, 15.5℄. Then we get the

exat sequene

1 �! h(l

2

s)

2

i �! hl

2

; s j (l

2

s)

2

= (sl

2

)

2

i �! hL

2

; Si �! 1;

and the assertion follows as in [15℄. �

Proof of the Theorem. As in [15℄ one has to prove split exatness of the fol-

lowing sequene

1 �! PiX �! Aut(oh(X)) �! AutX �! 1:

Here, the map Aut(oh(X)) �! AutX is given by F 7! � Æ F , where � 2

PiX is a shift-automorphism suh that �F (L) = L. This map is well-

de�ned and surjetive by the preeding lemma and learly has kernel PiX

and admits a setion. The assertion now follows as in [15℄ using [11℄. �

Remark 7. It follows from the split exat sequene in the preeding proof

and from [15℄ that in the non-tubular ase we have AutD

b

(X) = Z�(PiXo

AutX).

6. The domesti and tubular ases

If k is algebraially losed and of tubular weight type (2 2 2 2), then X

depends also on some parameter � 2 k, � 6= 0, 1. More preisely, two suh

urves X(2 2 2 2;�) and X(2 2 2 2;�) are isomorphi if and only if they have

the same j-invariant j(�) = 2

8

(�

2

��+1)

3

=(�

2

(��1)

2

) (see [15℄). Moreover,

also the automorphism group depends on this j-invariant [15℄:

AutX =

8

>

<

>

:

A

4

j = 0;

D

4

j = 1728;

V

4

j 6= 0; 1728:
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Case Weights Symbol R � R H � H

D 1

p

(p) rPGL

2

(R) rPGL

2

(R)

D 2

p

�

p

2

�

�

p

2

2

�

�

C

�

=R

�

o Z

2

C

�

=R

�

o Z

2

�

D 3

p

1

p

2

(p

1

p

2

)

R

�

o Z

2

p

1

= p

2

R

�

p

1

6= p

2

R

�

o Z

2

p

1

= p

2

R

�

p

1

6= p

2

D 4

n

2

�

2 n

2 1

�

�

2 n

2 1

2 1

�

�

Z

2

Z

2

�

D 5

2

3

�

2 3

1 2

�

�

2 3

1 2

1 2

�

�

Z

2

Z

2

�

D 6

2

2

n

(2 2 n)

Z

2

n > 2

S

3

n = 2

Z

2

n > 2

S

3

n = 2

D 7

2

3

3

(2 3 3)

Z

2

Z

2

D 8

2

3

4

(2 3 4) 1 1

D 9

2

3

5

(2 3 5) 1 1

Table 2. Domesti urves with M = R � R and M = H � H

Here, A

4

denotes the alternating group (whih is of order 12), D

4

the dihedral

group (of order 8) and V

4

= Z

2

� Z

2

the Klein four group. In the other

tubular ases (2 3 6), (2 4 4) and (3 3 3) and also in the domesti ases (p),

(p

1

p

2

), (2 2 n), (2 3 3), (2 3 4) and (2 3 5) there are no parameters sine

the group PGL

2

(k) is ating strongly 3-transitive on P

1

(k).

In this setion we study for k = R in whih domesti and tubular ases

parameters our and in whih not. Moreover, we alulate the automor-

phism group in all these ases, whih depends sometimes on the parameters.

The results are given in the tables below. As a onsequene we get

Corollary 8. (1) There are no parameters in the domesti ases.

(2) If X is tubular then AutX is �nite.
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Case Weights Symbol R � R H � H

T 1

2 2

�

2 2

2 2

�

�

2 2

2 2

2 2

�

�

V

4

t 2 (0; 1)

V

4

t 2 (0; 1)

�

T 2

2

4

�

2 4

1 2

�

�

2 4

1 2

1 2

�

�

Z

2

Z

2

�

T 3

3

3

�

3 3

1 2

�

�

3 3

1 2

1 2

�

�

Z

2

Z

2

�

T 4

2

3

6

(2 3 6) 1 1

T 5

2

4

4

(2 4 4)

Z

2

Z

2

T 6

3

3

3

(3 3 3)
S

3

S

3

T 7

2 2

2

�

2 2 2

1 1 2

�

�

2 2 2

1 1 2

1 1 2

�

�

Z

2

t = �=2;

1

t 2 (0; �)

t 6= �=2

Z

2

t = �=2;

1

t 2 (0; �)

t 6= �=2

�

T 8

2

2

2 2

(2 2 2 2)

A

4

j = 0

D

4

j = 1728

V

4

j 6= 0; 1728

A

4

j = 0

D

4

j = 1728

V

4

j 6= 0; 1728

Table 3. Tubular urves for M = R � R and M = H � H

We will not disuss the \lassial" ase M = C � C in the following. We

also omit it in the tables. For this ase we refer to [15℄. But note, that we

here onsider automorphisms over R, so that we have additionally omplex

onjugation.

6.1. The ases with M =

R

H

H

. If we take two distint points on the

2-sphere (identifying antipodes) then obviously there is an automorphism

mapping one point to the other. Hene there are no parameters in the

ase D 1 of Table 1. The automorphisms leaving one point x 2 S

2

�xed
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Case Weights Symbol AutX

D 1

p

(p)

R

+

� Z

2

D 2

p

�

p

2

�

V

4

D 3

p

�

p

2

2

�

V

4

D 4

p

1

p

2

(p

1

p

2

)

R

+

o V

4

p

1

= p

2

R

+

� Z

2

p

1

6= p

2

D 5

n

2

�

2 n

2 1

�

Z

2

D 6

n

2

�

2 n

2 1

2 1

�

Z

2

D 7

2

3

�

2 3

1 2

�

Z

2

D 8

2

3

�

2 3

1 2

1 2

�

Z

2

Table 4. Domesti urves with M = C � C

are rotation around the axis through x and �x by any angle and rotation

around an orthogonal axis by angle �.

If we have two pairs of distint points on the 2-sphere, then there is an

automorphism mapping one pair to the other if and only if the osine of

their respetive angles oinides; therefore we get a parameter t 2 [0; 1).

The set of automorphisms leaving the set of two distint points x, y �xed

depends on the question whether these points are orthogonal or not. In the

non-orthogonal ase (t 6= 0) we have rotations around the axes R(x+ y) and

R(x � y) by angle �. In the orthogonal ase there is additionally rotation

by angle �=2 around the axis orthogonal to the x-y-plane. As result we get

Table 1.

6.2. The ases with M = R � R and M = H � H . Sine eah automor-

phism maps the boundary (= real points) onto itself we have to deal with a

subgroup of PGL

2

(R). Moreover, the group PGL

2

(R) is ating 3-transitively

on boundary points. Therefore there are no parameters in the ases where

there are only boundary points, and at most three of them (ases D 1, D 3,

D 6, D 7, D 8, D 9, T 4, T 5, T 6 and T 7 of Tables 2 and 3). (In Table 2

we denote by rPGL

2

(R) a group whih is onjugate to the subgroup of
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Case Weights Symbol Parameter AutX

t

T 1

2

�

2

4

2

�

t 2 (0; �) V

4

T 2

2

2

�

2 2

2 2

�

t 2 (0; 1) V

4

T 3

2

2

�

2 2

2 2

2 2

�

t 2 (0; 1) V

4

T 4

2 2

�

2 2

2 2

1 2

�

t 2 (0; 1℄

V

4

t = 1

Z

2

t 6= 1

T 5

2

4

�

2 4

1 2

�

� Z

2

T 6

2

4

�

2 4

1 2

1 2

�

� Z

2

T 7

3

3

�

3 3

1 2

�

� Z

2

T 8

3

3

�

3 3

1 2

1 2

�

� Z

2

T 9

2

2

2

�

2 2 2

1 1 2

�

� V

4

T 10

2

2

2

�

2 2 2

1 1 2

1 1 2

�

� V

4

Table 5. Tubular urves with M = C � C

PGL

2

(R) formed by the upper triangular matries.) In ase D 6 the auto-

morphism group depends on whether n = 2 or n > 2; in the �rst ase it is

the symmetri group S

3

, in the latter it is Z

2

.

In ase D 2 of Table 2 it is easy to see that eah inner point an be mapped

to the imaginary unit i, hene there is no parameter. All automorphisms

�xing i are given by z 7! (az + b)=(�bz + a) (with a, b 2 R, not both zero),

and one an ompose these maps with the map z 7! 1=z (mapping i to �i,

whih is identi�ed with i.)

In the ase (2 2 2 2) of four boundary points, there is a real parameter

depending on the j-invariant as in the lassial ase.

In the ases where there is one boundary point and one inner point (D 4,

D 5, T 2, T 3 of Tables 2 and 3) one sees that there is no parameter sine any

pair (r; z) an be mapped to (1; z

0

), and any pair (1; z) an be mapped
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to any (1; z

0

) (r real, z, z

0

omplex). The automorphisms �xing1 and the

imaginary unit i (up to sign) are the identity and the map z 7! �z.

In the ase of two inner points (T 1 of Table 3) we have to hek whether

two pairs of distint inner points lie in the same PGL

2

(R)-orbit or not. After

applying suitable automorphisms, we an assume that the two pairs are (i; it)

and (i; it

0

), where i is the imaginary unit and t, t

0

> 0, 6= 1. Then, these

pairs lie in the same orbit if and only if t = t

0

, or t = 1=t

0

. Therefore we get

a parameter t in the open interval (0; 1). The subgroup of automorphisms

�xing a pair (i; it) (as set) is generated by z 7! �z and z 7! �t=z (whih

permutes the two points), hene is isomorphi to the Klein four group V

4

.

6.3. The ases with M = C � C . For the notation of the weighted points

in Tables 4 and 5 ompare Figure 1. The alulations in this ase are easy.

We only disuss the ases where parameters do our.

In the only ase where inner points are involved (ase T 1 in Table 5), if

we have two inner points z and z

0

, then there is an automorphism mapping

z onto z

0

if and only if they are proportional (over R). Therefore, we get a

parameter t 2 (0; �), whih is the angle of the polar oordinates (note that

onjugates are identi�ed). The automorphism group (�xing the inner point

z) is generated by the ghost  and by jzj

2

� I.

In the ases T 2, T 3, T 4 in Table 5, let (r

1

; r

2

) and (r

0

1

; r

0

2

) be two pairs

of (distint) weighted points. For example, in the ase T 2 we have positive

real numbers. By strething, we an assume that r

1

= 1 = r

0

1

, r

2

; r

0

2

6= 1.

Then (r

1

; r

2

) an be mapped to (r

0

1

; r

0

2

) if and only if r

2

= r

0

2

or r

2

= 1=r

0

2

.

Hene we get a parameter t in the open interval (0; 1). The points 1 and r

are �xed (as set) by the ghost  and by r � I. In the ase T 4, if we also let

r

1

= 1, then we have additionally the possibility r

2

= �1, therefore we get a

parameter t in the half-open interval (0; 1℄; the points r

1

and r

2

are �xed in

this ase only by , in ase t = 1 (r

2

= �1) additionally by the inversion I.

It is easy to see that in the remaining ases of Tables 4 and 5 eah pair

(triple, singleton) of weighted points an be mapped into any other so that

there is no parameter. Also the alulation of the automorphism group is

straightforward.

Remark 9. There are some di�erent tubular ases onneted by derived

equivalene due to the fat that there are tubular exeptional urves with

two isomorphism lasses of tubular families (whih an be shown as in [10℄

using [11℄): Eah tubular urve in T 1 of Table 3 with underlying bimodule

R � R is derived equivalent to one in T 3 of Table 5 and onversely. The

same is true for the ase T 1 of Table 3 with underlying bimodule H � H

and T 2 of Table 5, for T 1 of Table 1 and T 4 of Table 5, for T 2 of Table 3

with underlying bimodule R �R and T 6 of Table 5, for T 2 of Table 3 with

underlying bimodule H � H and T 5 of Table 5.
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7. An example

In this �nal setion we give an example of a tubular exeptional urve

where the exat sequene in Theorem 5 splits.

Example 10. Denote by C and C

0

two di�erent embeddings of the omplex

numbers into the skew-�eld H of quaternions: Denote by i, j the genera-

tors with relations i

2

= �1 = j

2

, ji = �ij. Then for example, we take

C = R1 � Ri and C

0

= R1 � Ri

0

, where i

0

is some pure quaternion of the

form �i + �j + ji, i

0

62 Ri, (�; �; ) 2 S

2

. Let � be the tubular anonial

R-algebra given as tensor algebra of the speies

R H

C

C

R

H

H

C

C

0

H

H

modulo a ertain ideal of relations (see [10℄). We show

AutD

b

(�) '

(

(Z

2

o D

4

)o hl

2

; si if (�; �; ) ? (1; 0; 0)

(Z

2

o V

4

)o hl

2

; si else:

Denote by X the tubular urve assoiated with the entral separating tubu-

lar family suh that D

b

(X) ' D

b

(�) as triangulated ategories [10℄. More

preisely, X arises from the projetive spetrum of the Z-graded algebra

R[X; Y; Z℄=(X

2

+ Y

2

+ Z

2

) = R[x; y; z℄

by insertion of the weight 2 into the points x and �x + �y + z. We have

to show that the exat sequene from Theorem 5 splits: Let U be the sub-

group of AutD

b

(X) whih is generated by the shift-automorphisms �

L

, �

S

assoiated to the tubes belonging to L and to some exeptional simple sheaf

S, respetively. In order to show, that �

L

7! l

2

, �

S

7! s de�nes an iso-

morphism between U and hl

2

; si � B

3

, it is enough to see that we have

the relation �

S

�

L

�

S

�

L

' �

L

�

S

�

L

�

S

. Easy alulations show that this

relation holds for the indued automorphisms of K

0

X. With the arguments

of [15, 7.1℄ and the expliit desription of AutX it is enough to show that

�

S

�

L

�

S

�

L

�

�1

S

�

�1

L

�

�1

S

�

�1

L

lies in AutX and �xes all simple sheaves lying in

homogeneous tubes. But this follows sine �

L

�

S

�

L

preserves the rank (up

to sign) and �

S

�xes homogeneous tubes.
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