
ON THE K-THEORY OF TUBULAR ALGEBRAS
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Abstrat. Let � be a tubular algebra over an arbitrary base �eld. We study

the Grothendiek group K

0

(�), endowed with the Euler form, and its automor-

phism group Aut(K

0

(�)) on a purely K-theoretial level as in [7℄. Our results

serve as tools for lassifying the separating tubular families of tubular algebras

as in the example [5℄ and for determining the automorphism group Aut(D

b

(�))

of the derived ategory of �.

1. Introdution

This artile is onerned with the Grothendiek group (endowed with the Euler

bilinear form) of a anonial algebra � over a non-algebraially losed �eld (as de-

�ned by Ringel and Crawley-Boevey [13℄), in partiular with those of tubular type

(ompare [7, 9℄). All algebras whih are derived-equivalent to � are also treated

by our investigation, in partiular tubular algebras (= onealed-anonial alge-

bras ([9℄) of tubular type) and derived-tubular algebras. This follows from the fat

that an equivalene (of triangulated ategories) of the derived ategories indues an

isomorphism of the Grothendiek groups preserving the Euler forms (ompare [3℄).

The main aim of this paper is to develop the K-theoretial bakground whih is

needed to prove some results in the representation theory of tubular algebras and

ertain e�ets whih our when the base �eld is not algebraially losed.

A tubular algebra � admits a rational family of separating tubular families of

stable tubes. Over an algebraially losed �eld all these stable separating tubular

families for � are equivalent to eah other as ategories [12, 11℄. This is not true

in general over a non-algebraially losed �eld. In fat, in [5℄ we gave an example

of a tubular anonial algebra over the real numbers whih admits two equivalene

lasses of separating tubular families of stable tubes. The methods and results of

the present paper allow to prove similar results for arbitrary tubular algebras.

Furthermore we give an example whih shows that the distintion lemma in [1, 2℄

is not valid over non-algebraially losed �elds.

We also determine the group of automorphisms of the Grothendiek group of

� whih preserve the Euler form. This is the �rst step of desribing the automor-

phism group of the derived ategory, ompare [10℄. Starting point of our disussion

is [7℄. Furthermore, we orret some errors whih appeared in that artile. Some

results in our paper are part of the authors dotoral thesis [6℄. The author would

like to thank Professor Helmut Lenzing for many helpful disussions.
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2 DIRK KUSSIN

2. Canonial bases and invariane of tubular symbols

We reall some de�nitions from [7℄. A bilinear group is a �nitely generated

abelian group V equipped with a (non-symmetri) bilinear form

h�;�i : V � V �! Z

and an automorphism � : V �! V (alled Coxeter transformation) suh that for

all x, y 2 V we have

hy;xi = �hx; �yi:

If additionally V is non-degenerate, then V is alled bilinear lattie. We always

assume that V is normalized , that is hV; V i = Z. Morphisms between bilinear

groups are group homomorphisms whih preserve the bilinear form and ommute

with the Coxeter transformation.

Let V = (V; h�;�i; �) be a bilinear group, and denote by KernV the subgroup

onsisting of all x 2 V suh that hx; V i = 0 (equivalently, hV;xi = 0). We all a

linear map r : V �! Z a rank or rank funtion, if r is surjetive and ompatible

with the Coxeter transformation, that is r = r Æ � . The radial of V is de�ned

as RadV = fx 2 V j �x = xg. If w is in RadV suh that w 62 KernV , and

 := [Z : hV;wi℄, then rk

w

:=

1



h�;wi de�nes a rank funtion, alled w-rank.

Assume now that V is a bilinear lattie. Diret summands of RadV of rank 1

are alled 1-tubes. Let r be a rank funtion. By salar extension with Q we get

v 2 V whih is generator of a 1-tube suh that r = rk

v

. Hene we have a bijetion

between rank funtions and generators of 1-tubes.

Two ranks r and r

0

on V are alled similar , if there is � 2 AutV suh that

r

0

= r�. If � 2 AutV and Zw and Zw

0

are 1-tubes, then rk

w

= rk

w

0

� if and

only if �w

0

= w. If V and V

0

are bilinear latties and w 2 V and w

0

2 V

0

are distinguished generators of 1-tubes, then an isomorphism between bilinear

latties � : V �! V

0

is alled rank isomorphism if �w = w

0

. Denote by Aut

w

V

the subgroup of Aut V onsisting of automorphisms � suh that �(w) = w.

Let V be a bilinear group. An element u 2 V is alled root if hu;ui > 0 and

hu;xi

hu;ui

2 Z for all x 2 V . Let u 2 V be a root with � -period p � 2. We all

u; �u; : : : ; �

p�1

u

a root basis, if these elements are linearly independent over Z and

h�

i

u; �

j

ui =

8

>

<

>

:

hu;ui j � imod p;

�hu;ui j � i+ 1mod p;

0 else:

A subgroup T � V is alled p-tube (p � 2), if it is generated by a root basis of

length p. A p-tube T and a p

0

-tube T

0

are alled orthogonal if hT; T

0

i = 0.

Canonial (bilinear) latties are de�ned in [7℄. They serve as model for Grothen-

diek groups of anonial algebras (exeptional urves [8℄, resp.). The following

proposition is a onverse of [7, Prop. 7.7℄ and an be viewed as de�nition for

anonial latties. We omit the proof whih is straightforward.
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Proposition 2.1. Let V be a (normalized) bilinear group and

B

w

: a; �

j

s

i

(1 � i � t; 0 � j � p

i

� 2); w

a system of generators of V having the following properties (1){(4):

(1) w 2 RadV , w 62 KernV .

(2) a is root of w-rank 1.

(3) The s

i

are roots of w-rank 0 and their � -orbits form root bases of pairwise

orthogonal p

i

-tubes.

(4) ha; s

i

i > 0 and ha; �

j

s

i

i = 0 for 0 < j � p

i

�1; moreover, ha; s

i

i=ha;wi 2 Z.

Under these assumptions the following holds true: the numbers

� := ha;ai; " :=

ha;wi

ha;ai

; e

i

:=

ha; s

i

i

hs

i

; s

i

i

; f

i

:=

1

"

ha; s

i

i

ha;ai

are positive integers, B

w

is a Z-basis, h�;�i is non-degenerate, " 2 f1; 2g, and

(V;w) is a anonial bilinear lattie with symbol (ompare [7, Def. 7.6℄)

(2.1) �[V;w℄ =

0

�

p

1

; : : : ; p

t

d

1

; : : : ; d

t

"

f

1

; : : : ; f

t

1

A

;

where d

i

= e

i

f

i

.

It is shown in [9℄ that the Grothendiek group of a onealed-anonial algebra

has a basis as in the proposition (in partiular this is true for a tubular algebra).

Let V be a anonial lattie as in the proposition. We all (ontrary to [7℄) the

basis B

w

anonial or w-anonial and write it usually in the form

(2.2) a j s

1

; �s

1

; : : : ; �

p

1

�2

s

1

j � � � j s

t

; �s

t

; : : : ; �

p

t

�2

s

t

j w

We all the symbol (2.1) more preisely w-symbol. A anonial lattie is thus a

bilinear group admitting a anonial basis. Note, that the number � as de�ned

above an be alulated from the symbol, sine it is the smallest positive integer

suh that �

"f

i

e

i

2 Z for i = 1; : : : ; t, see [7, Prop. 7.7℄. Let p = lm(p

1

; : : : ; p

t

) and

Æ[V ℄ := p

�

t

X

i=1

e

i

f

i

�

1�

1

p

i

�

�

2

"

�

:

Then V is alled domesti (resp. tubular, wild) if Æ[V ℄ < 0 (= 0, > 0, resp.)

(ompare [7℄ and also [9℄ for further haraterizations).

We are interested in the question whether the numbers �, ", e

i

, f

i

(hene the

symbol) are invariants of a anonial lattie. That is, given a anonial lattie

and two anonial bases, are the symbols de�ned by these anonial bases (up to

permutation) the same? This is not true in general, sine there is a ounterexample

in the wild ase (see Example 4.3), and also not true for some tubular ases, as

we will see. But we show, that the symbol is an invariant of a tubular anonial

lattie with respet to rank isomorphisms.

Let V be a bilinear lattie and B be a Z-basis of V . We all the matrix C

assoiated with the bilinear form relative to the basis B a Cartan matrix . If � is

the matrix assoiated with the Coxeter transformation � with respet to B, then

we have the relation � = �C

�1

C

t

(see [7℄).
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Lemma 2.2. Let (V;w) be a anonial lattie. Under the notations above the

numbers t, Æ[V ℄, the determinant of a Cartan matrix and the weights p

1

; : : : ; p

t

(up to permutation) are invariants with respet to isomorphisms of bilinear groups.

Moreover, the produt �" is an invariant with respet to rank isomorphism; it

oinides with the index [Z : hV;wi℄.

Proof. The invariane of the weights follows from onsidering the Coxeter poly-

nomial, see [7, Prop. 7.8℄. In order to see the invariane of Æ[V ℄ distinguish the

tubular from the non-tubular ase. The tubular ase is lear, sine tubularity

means that the radial of V is of rank two [7, 10.3℄. If V is non-tubular, then

by [7, 4.3+8.2℄ Æ[V ℄ is the unique non-zero integer Æ, suh that �

p

= �

Æ

0

, where �

0

is the shift automorphism assoiated to w, and w generates the radial of V . �

Let (V;w) be a anonial lattie with basis as in Prop. 2.1. Let u 2 V be a

root of w-rank 0. De�ne e(u) :=

ha;ui

hu;ui

and f(u) :=

1

"

ha;ui

ha;ai

. We all the fration

e(u)

f(u)

=

�"

hu;ui

the root quotient of u.

Lemma 2.3. With the de�nitions from Prop. 2.1, let T

i

be the tube generated by

the � -orbit of s

i

(i = 1; : : : ; t). Let u 2 V be a root of w-rank 0. Then there is

i 2 f1; : : : ; tg and n 2 Z suh that n

e

i

f

i

2 Z and u = u

0

+nw, where u

0

is a root in

T

i

; the root quotient of u is

e

i

f

i

. If, moreover, the � -orbit of u forms a root basis,

then there is some j suh that (after possibly hanging n) u = ��

j

s

i

+ nw.

Proof. There is a representation u =

P

t

i=1

u

i

+nw where u

i

2 T

i

and n 2 Z. Sine

u is a root, the number hu;ui =

P

t

i=1

hu

i

;u

i

i divides all the non-negative integers

hu;u

i

i = hu

i

;u

i

i, hene u = u

i

+ nw for some i. Therefore, u

0

= u

i

is a root in

T

i

and hene also in V . Moreover, hu;ui = hu

0

;u

0

i = hs

i

; s

i

i ([7, Prop. 5.2℄). We

get

e(u)

f(u)

=

�"

hs

i

;s

i

i

=

e

i

f

i

. It is easy to hek that if v is a root in T

i

, then v + nw

is a root if and only if n

e

i

f

i

2 Z. Moreover, if the � -orbit of u forms a root basis,

then also the � -orbit of u

0

forms a root basis and hene u

0

is a root of length �1

(for the notion of length see [7℄). �

Theorem 2.4. The symbol is a omplete invariant of a tubular anonial lattie

with respet to rank isomorphisms.

Proof. The proof is based on the analysis of the list of tubular symbols in [7℄, see

also Table 1. Tubular latties whih are rank isomorphi share the same sequene

of weights and the same determinant of the Cartan matries. In some ases we get

pairs of symbols (Table 1), where these data oinide. In these ases the members

of the pairs do not lead to rank isomorphi latties sine either the numbers �"

do not oinide, or (in the ase

 

2 2

2 2

1 2

!

and (2 2 j 2)) the root quotients do

not oinide (whih are

1

2

, 2 in the �rst and 1, 1 in the seond ase) (see also

Remark 8.2 (3)).

To show ompleteness, let (V;w) and (V

0

;w

0

) be tubular anonial latties with

the same symbols. Then we have anonial bases

B

w

: a; �

j

s

i

(1 � i � t; 0 � j � p

i

� 2); w
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of V and

B

w

0

: a

0

; �

j

s

0

i

(1 � i � t; 0 � j � p

i

� 2); w

0

of V

0

as in Prop. 2.1. It is then possible to de�ne a rank isomorphism � on these

bases in the obvious way whih preserves the bilinear form sine the symbols are

the same. �

With the same arguments one shows that the symbol is a omplete invariant of

a domesti anonial lattie with respet to isomorphisms.

3. Invariane of tubular deompositions

Lemma 3.1. Let (V;w) be a non-wild (that is, domesti or tubular) anonial

lattie, and let � 2 Aut

w

V . Let (2.2) be a anonial basis and T

i

be the tube

generated by the � -orbit of s

i

(i = 1; : : : ; t). Then there is a permutation � 2 S

t

suh that for eah i 2 f1; : : : ; tg we have �(T

i

) = T

�(i)

.

Proof. By Lemma 2.3 there is a permutation � 2 S

t

suh that �(s

i

) = ��

k

i

s

�(i)

+

n

i

w, where n

i

2 Z and n

i

e

�(i)

f

�(i)

2 Z. Now n

i

2 Zf

�(i)

(whih in ase that the

symbol is di�erent from

0

�

2

4

2

1

A

easily follows from the fat that then eah e

i

= 1 or

f

i

= 1; applying � to s

1

+ �s

1

= 2w and involving �(w) = w shows the assertion

also in that ase). This implies �(s

i

) 2 T

�(i)

. �

Example 3.2. The lemma is not true in general for wild anonial latties. For

example, onsider the wild symbol

0

�

4

4

2

1

A

(whih is easily seen to be realizable as

Grothendiek group of a anonial algebra over the real numbers R), de�ned by

the anonial basis a j s; �s; �

2

s j w. The anonial basis a � 3s � 2�s � �

2

s j

�s+w;��s+w;��

2

s+w j w de�nes the same symbol. The tubes generated by

the � -orbits of s and �s+w, resp., are distint.

Remark 3.3. The preeding lemma provides a proof (in the non-wild ases) of [7,

Thm. 12.2℄. Note that [7, Prop. 11.4℄ whih is used there does not hold (even in

the tubular ase): for example, let (V;w) be the tubular anonial lattie with

anonial basis a j s

1

j w and symbol

 

2

4

2

!

. Then the � -orbits of s

1

and s

1

+w,

resp., generate two di�erent tubes of elements of rank zero. Another obstrution

is treated in setion 7.

4. Further invariants

In this setion we do not restrit to tubular anonial latties. We show that

the numbers � and " are invariants (up to rank isomorphism). By Lemma 2.2 we

only know that the produt �" is an invariant.

In the anonial lattie (V;w) we �x a anonial basis B as in (2.2) whih

de�nes a symbol (2.1) and assume that we have another w-anonial basis

e

B. By
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Lemma 2.3, after slightly hanging

e

B we get a w-anonial basis B

0

, yielding (up

to permutation) the same symbol as

e

B, and whih is of the form

B

0

: a

0

j ��

j

s

i

+ n

i

w (1 � i � t; 0 � j � p

i

� 2) j w;

where a

0

has the shape

a

0

= a+

t

X

i=1

p

i

�2

X

j=0

�

ij

�

j

s

i

:

Lemma 4.1. Under the preeding assumptions we have

�

ij

= �(p

i

� 1� j)n

i

e

i

f

i

and

(4.1) ha

0

;a

0

i = ha;ai+ �"

t

X

i=1

�(p

i

� 1)n

i

e

i

+ �"

t

X

i=1

n

2

i

e

i

f

i

p

i

(p

i

� 1)

2

:

Proof. Exploit ha

0

;��

j

s

i

+ n

i

wi = 0 (j = 1; : : : ; p

i

� 1). �

Proposition 4.2. The numbers � and " are invariants of a anonial lattie (V;w)

with respet to rank isomorphisms.

Proof. Denote �

0

= ha

0

;a

0

i and "

0

=

ha

0

;wi

ha

0

;a

0

i

. The preeding lemma shows that

ha;ai divides ha

0

;a

0

i. Sine �" = �

0

"

0

, the formula also shows that ha

0

;a

0

i divides

ha;ai, hene � = �

0

and then also " = "

0

. �

Example 4.3. We show, that a w-symbol in the wild ase need not to be unique.

Consider the anonial lattie (V;w) withw-anonial basis a j s

1

j s

2

j s

3

j s

4

j w;

whih de�nes the symbol

0

�

2 2 2 2

1 1 25 25 "

1 1 5 5

1

A

. An easy alulation shows that

a+ s

1

+ s

2

� s

3

j s

1

+w j s

2

+w j s

3

�w j s

4

j w

is also a w-anonial basis whih de�nes the symbol

0

�

2 2 2 2

9 9 9 25 "

3 3 3 5

1

A

. This is

a ounterexample of the result [7, Thm. 13.1℄.

5. Slopes and rank funtions

Let (V;w) be a tubular anonial lattie with rank rk = rk

w

, let p be the least

ommon multiple of the weights, and let a 2 V be a root of rank 1 ourring in a

w-anonial basis.

Lemma 5.1. Let u :=

P

p�1

j=0

�

j

a. Then u, w forms a Q-basis of Q 
RadV .

Proof. By [7, Prop. 10.3℄ RadV is free of rank 2, hene Q 
 RadV is two-

dimensional over Q . Sine rku = p and rkw = 0 the elements u and w are

linearly independent. �
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Remark 5.2. In ase

�

2

2

2

�

the elements

1

2

(u � w), w form a Z-basis of

RadV . In all other tubular ases RadV has a Z-basis of the form

1



u, w, where

 2 f1; 2; 3g. Compare the fourth olumn of Table 1.

Denote by Q the disjoint union Q [ f1g, where 1 will be onsidered as \fra-

tion"

1

0

. Let q 2 Q , q =

d

r

suh that (d; r) = 1, r � 0. De�ne
e
w

q

:= r � u + d �w

and w

q

suh that Zw

q

is a 1-tube and
e
w

q

2 Nw

q

.

Proposition 5.3. (1) The 1-tubes of (V;w) are exatly the Zw

q

(q 2 Q ).

(2) The rank funtions (up to sign) are in one to one orrespondene with the

elements q 2 Q .

Proof. It is not diÆult to show that the map q 7! Zw

q

is a bijetion between Q

and 1-tubes. �

The automorphism group of RadV an be identi�ed with the modular group

� = SL

2

(Z). By restrition eah � 2 AutV indues an element in �.

Denote by P(Rad V ) the set of all diret summands of rank 1 of RadV , whih

we also identify with Q . Eah � 2 AutV (or eah � 2 �) indues a bijetive map

� on P(RadV ), whih we onsider as element of the projetive modular group � =

PSL

2

(Z). In this way the group AutV ats on the set Q (via �(w

q

) = �w

�(q)

).

Let q, q

0

2 Q . We all q and q

0

equivalent if there is a � 2 AutV suh that

�w

q

= w

q

0

. We all the lasses of the indued equivalene relation on Q slope

lasses.

6. Shift automorphisms

Let (V;w) be a tubular anonial lattie with symbol (2.1) whih is de�ned by

a �xed w-anonial basis (2.2) and let p = lm(p

1

; : : : ; p

t

). For all x, y 2 V let

hhx;yii :=

p�1

X

j=0

h�

j

x;yi:

Let rk = rk

w

, and de�ne a degree funtion deg : V �! Z by

deg(x) =

1

�"

hha;xii

for all x 2 V . Then we an de�ne the slope of elements x 2 V , for whih not

both degx and rkx are zero, by �(x) =

deg(x)

rk(x)

2 Q . Obviously, �(w

q

) = q for all

q 2 Q . (The slope depends on the hoie of deg (resp. a) and rk (resp. w).) We

de�ne ertain shift automorphisms (as in [7℄) and study their e�et on the slope.

For the general notion of a shift automorphism assoiated to an arbitrary tube we

refer to [7℄.

Let

(6.1) �

0

(x) = x�

hw;xi

�"

w:

We have deg �

0

(x) = deg x+ p rkx, rk�

0

(x) = rkx and ��

0

(x) = �x+ p.
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For i = 1; : : : ; t let

(6.2) �

i

(x) = x�

p

i

�1

X

j=0

h�

j

s

i

;xi

hs

i

; s

i

i

�

j

s

i

:

We have deg �

i

(x) = deg x+ d

i

p

p

i

rkx, rk�

i

(x) = rkx and ��

i

(x) = �x+ d

i

p

p

i

.

Remark. It is easy to see that the � -orbit of a forms a root basis of a p-tube.

Let

(6.3) �

a

(x) = x�

p�1

X

j=0

h�

j

a;xi

ha;ai

�

j

a:

We have deg �

a

(x) = deg x, rk�

a

(x) = rkx� "deg x and ��

a

(x) =

�x

1�"�x

.

Eah automorphism � 2 AutV indues a bijetive map � from Q into itself. We

onsider the subgroup G of � generated by these maps. Our aim is to alulate

the (number of) orbits of the ation of G on Q . Consider the subgroup S of G

whih is generated by the indued maps of �

0

, �

a

and all the �

i

(i = 1; : : : ; t).

Studying the list of tubular symbols in [7℄ (see also Table 1) we see that S is

already generated by two of these maps, denoted by � and �, where the following

�ve ases an our:

(1) �(q) = q + 1; �(q) =

q

1+q

;

(2) �(q) = q + 2; �(q) =

q

1+q

;

(3) �(q) = q + 3; �(q) =

q

1+q

;

(4) �(q) = q + 1; �(q) =

q

1+2q

;

(5) �(q) = q + 2; �(q) =

q

1+2q

.

Lemma 6.1. Let S = h�; �i. In eah of the �ve ases the orbits of the ation of

S on Q are the following

1: Q

2: f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg

3: f

a

b

j a 2 Z; b 2 N; a � 0mod 3g; f

a

b

j a 2 Z; b 2 N; a 6� 0mod 3g

4: f

a

b

j a 2 N; b 2 Z; b eveng; f

a

b

j a 2 N; b 2 Z; b oddg

5: f

a

b

j a 2 Z; b 2 N; a odd; b oddg; f

a

b

j a 2 Z; b 2 N; a odd; b eveng;

f

a

b

j a 2 Z; b 2 N; a even; b oddg:

Here, the notation

a

b

taitly means that a and b are oprime.

Proof. Denote by R and S the generators

�

1 0

1 1

�

;

�

1 1

0 1

�

of �, and by R, S

their images in �, resp. It is suÆient to determine the number of orbits of the

ation of the subgroups hR;Si = �, hR;S

2

i, hR;S

3

i, hR

2

; Si, and hR

2

; S

2

i, resp.,

of � on Q , in other words the number of (equivalene lasses of) usps of these

subgroups. For this see [4, III. x1℄. (It is easily proved, that hR

2

; S

2

i = �(2) and

hR;S

3

i = �

1

(3) = �

0

(3) in the notation of [4℄.) �
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7. Roots with no defined slope

Let (V;w) be a tubular anonial lattie with anonial basis (2.2) and rank

rk = rk

w

=

1

�"

h�;wi and degree deg =

1

�"

hha;�ii. Let x 2 V . We say that

x has a de�ned slope, if rkx 6= 0 or deg x 6= 0. Otherwise we say that x has

no de�ned slope. This de�nition is independent from the hoie of our rank and

degree, sine by Lemma 5.1 it is easy to see, that x has no de�ned slope if and

only if x 2 (RadV )

?

(that is, hy;xi = 0 for all y 2 RadV ). From this it also

follows that if � 2 AutV then x has a de�ned slope if and only if �x has a de�ned

slope.

Example 7.1. Assume that the symbol of (V;w) is

0

�

2

4

2

1

A

, de�ned by the anonial

basis a j s

1

j w. Then x := s

1

�w is a root with rkx = 0 and deg x = 0, hene has

no de�ned slope. If q is the quadrati form q : V �! Z de�ned by q(v) = hv;vi,

then

x 2 q

�1

(1) \ (RadV )

?

:

This is an example of a situation where the ondition of the distintion lemma

in [1, 2℄ is not ful�lled.

Lemma 7.2. The tubular symbol

0

�

2

4

2

1

A

is the only one suh that there exists a root

whih has no de�ned slope.

Proof. By Lemma 2.3 eah root of rank zero is of the form x = �

P

m+l

j=m

�

j

s

i

+nw,

where p

i

does not divide l + 1 and n

e

i

f

i

2 Z. Then deg x = (l + 1)f

i

p

p

i

+ np

(p = lm(p

1

; : : : ; p

t

)). The proof of Lemma 3.1 shows that in all tubular ases

di�erent from

0

�

2

4

2

1

A

we have n 2 Zf

i

. Therefore, deg x = 0 is only possible in this

speial ase. �

8. Slope lasses of tubular symbols

Reall that a (tubular) symbol is a sheme of natural numbers whih is de�ned

by a anonial basis of a (tubular) anonial lattie. We all two symbols equiva-

lent , if it is possible to realize them by two anonial bases in the same anonial

lattie. Let V be a tubular anonial lattie.

Theorem 8.1. Table 1 shows the 17 equivalene lasses of the tubular symbols.

There are at most 2 slope lasses, eah lying dense in Q ; the number of slope

lasses oinides with the number of symbols lying in one equivalene lass. There

is a subgroup U of AutV , generated by shift automorphisms assoiated to elements

whih are listed in the third olumn of the table, suh that U ats transitively on

the slope lasses.

Remarks 8.2. (1) The theorem, whih will be proved in setion 10, an be used

to lassify the separating tubular families over a tubular algebra similarly to the

example desribed in [5℄; this will be published in a forthoming paper.
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symbols hs

i

; s

i

i gen. of U rad.-basis tH S

�[V ℄

U

�

2

4

�

;

 

2

2 2

2

!

1

4

a;w

a; s

1

;u� 2w

1

2

u;w

u;w

Z

2

1 �

2

 

2

4

2

!

1 a;w;

u+2w

2

1

2

u;w Z

2

1 �

 

2

4

4

!

;

�

2

2

2

�

4

1

a;w

s

1

;

u+w

2

u;w

u�w

2

;w

Z

2

1 �

2

�

3

3

�

;

 

3

3

3

!

1

3

a; s

1

1

3

u;w

u;w

Z

3

1 �

3

�

2 2

1 3

�

3; 1 a; s

1

u;w Z

2

1 �

 

2 2

1 3

1 3

!

1; 3 a; s

1

u;w Z

2

1 �

�

2 2

2 2

�

;

 

2 2

2 2

2 2

!

1; 1

2; 2

a; s

1

1

2

u;w

u;w

Z

2

� Z

2

Z

2

�

2

 

2 2

2 2

1 2

!

; (2 2 j 2)

1; 4

2; 2

a; s

1

u;w

Z

2

� Z

2

Z

2

1

Z

2

�

2

�

2 4

1 2

�

;

 

2 4

1 2

1 2

!

2; 1

1; 2

a; s

2

1

2

u;w

u;w

Z

4

1 �

2

�

3 3

1 2

�

2; 1 a; s

1

u;w Z

3

1 �

 

3 3

1 2

1 2

!

1; 2 a; s

1

u;w Z

3

1 �

(2 3 6) 1; 1; 1 a; s

3

u;w Z

2

� Z

3

1 �

(2 4 4) 1; 1; 1 a; s

2

u;w Z

2

� Z

4

Z

2

�

(3 3 3) 1; 1; 1 a; s

1

u;w Z

3

� Z

3

S

3

�

�

2 2 2

1 1 2

�

2; 2; 1 a; s

1

u;w Z

2

� Z

2

Z

2

�

 

2 2 2

1 1 2

1 1 2

!

1; 1; 2 a; s

1

u;w Z

2

� Z

2

Z

2

�

(2 2 2 2) 1; 1; 1; 1 a; s

1

u;w (Z

2

)

3

S

4

�

Table 1. Classes of tubular symbols

(2) It an be shown [6℄ that eah tubular symbol an be realized as Grothen-

diek group of a tubular anonial algebra (or of a tubular exeptional urve) over
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some �eld of harateristi zero. This an be done by inserting weights in suitable

simple regular representations of suitable tame bimodules as desribed in [8℄.

(3) The seond olumn of Table 1 shows the lists of numbers hs

1

; s

1

i; : : : ; hs

t

; s

t

i.

(For eah pair of symbols, the upper (lower) list of numbers is assoiated to the

left (right, resp.) symbol.) We see that two equivalent but di�erent symbols an

be distinguished by these lists.

Corollary 8.3. Let U be the subgroup of AutV as in Theorem 8.1. Then

f� j � 2 AutV g = f� j � 2 Ug:

The proof will be given in setion 11.

9. The automorphism groups of tubular symbols

Denote by U the group as in Corollary 8.3, and denote by � : AutV �! U the

map � 7! �. The group U an be onsidered as subgroup of � = PSL

2

(Z). More

preisely, easy alulations (using the Z-basis of RadV given in Table 1, fourth

olumn) show that U is of the form �, �

2

:= hR;S

2

i (or hR

2

; Si) or �

3

:= hR;S

3

i

(or hR

3

; Si), see Table 1. These groups oinide with the well-known (projetive)

ongruene modular groups �, �

0

(2) (or �

0

(2)) and �

0

(3) (or �

0

(3)) resp. (and

hene are subgroups of � of index 1, 3 or 4, resp.), ompare [4℄.

By [7, Prop. 12.1℄ the subgroup of AutV whih is generated by the shift auto-

morphisms �

0

, �

1

; : : : ; �

t

from setion 6 is isomorphi to the abelian group L(p;d)

on generators ~x

0

; : : : ; ~x

t

with relations p

i

~x

i

= d

i

~x

0

for 1 � i � t. As in [7℄ we

denote by S

�[V ℄

the subgroup of the symmetri group S

t

onsisting of all permu-

tations � preserving the symbol data, that is, satisfying p

i

= p

�(i)

, d

i

= d

�(i)

and

f

i

= f

�(i)

for all i = 1; : : : ; t. Denote by h�1i the subgroup of AutV generated by

the negative identity whih is of order 2.

Theorem 9.1. Let V be a tubular anonial lattie and let U be the subgroup of

AutV as in Theorem 8.1. Let tH be the torsion group of the group H = L(p;d).

Then there is an exat sequene

(9.1)

1

h�1i � tH � S

�[V ℄

AutV

�

U

1:

Proof. It is suÆient to show that h�1i � tH � S

�[V ℄

oinides with the kernel of �.

This follows as in the proof of [7, Cor. 12.4℄ (ompare Remark 3.3). �

The groups tH, S

�[V ℄

and U in eah of the tubular ases are listed in Table 1.

10. Proof of Theorem 8.1

We treat eah of the 23 tubular ases (whih are listed in [7℄), and �x a anonial

basis (2.2). First we de�ne two shift automorphisms suh that the subgroup S of

AutV generated by them ats on Q with the orbits whih are given in Lemma 6.1.

Then we show that either a) these orbits already oinide with the slope lasses

(by showing that the w

q

-symbols (q-symbols for short) for di�erent orbits are

distint), or b) that we get the slope lasses as orbits in Q of the ation of a

subgroup S

0

of AutV whih arises from S by adding a further shift automorphism

(by using then the same argument as in ase a)). Of ourse, it is suÆient to
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determine q-symbols only for representatives q for eah orbit. We get these q-

symbols by alulating a w

q

-anonial basis B

q

. (The 1-symbol is always given

by the given anonial basis (2.2).)

In the ases

�

2 2

1 3

�

,

0

�

2 2

1 3

1 3

1

A

,

�

3 3

1 2

�

,

0

�

3 3

1 2

1 2

1

A

, (2 3 6), (2 4 4), (3 3 3),

�

2 2 2

1 1 2

�

,

0

�

2 2 2

1 1 2

1 1 2

1

A

and (2 2 2 2) the shifts assoiated to a and one of the s

i

yield the ase 1 from setion 6. Hene there is only one slope lass in these ases,

namely Q .

10.1. The ase

�

2

4

�

. Shifts at a and w yield the ase 2 from setion 6, hene

there are at most 2 slope lasses with representatives q = 0 and q =1, resp. For

the representative q = 0 we have the anonial basis B

0

: �s

1

j �a j

1

2

u; and thus

get the 0-symbol

0

�

2

2 2

2

1

A

.

By 2.4 there are exatly 2 slope lasses, namely

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.2. The ase

0

�

2

2 2

2

1

A

. Shifts at a and s

1

(or w) yield the ase 5 from

setion 6, hene there are at most 3 slope lasses with representatives q = 0, q = 1

and q =1, resp. The anonial basis B

0

: �s

1

j �a j u gives the 0-symbol

�

2

4

�

.

The anonial basis B

1

: a j 2a+w j u+w gives the 1-symbol whih oinides

with the 1-symbol.

Shift at the 1-tube whih is generated by u� 2w and de�ned by

�

u�2w

(x) = x�

hu� 2w;xi

4

(u� 2w)

indues on the level of the slopes the map q 7!

3q+4

�q�1

and therefore 1 and 1 lie in

the same slope lass. Hene we have preisely 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a oddg; f

a

b

j a 2 Z; b 2 N; a even; b oddg:

10.3. The ase

0

�

2

4

2

1

A

. Shifts at a and w yield the ase 2 from setion 6, hene

there are at most 2 slope lasses with representatives q = 0 and q =1, resp. The

anonial basis B

0

: �s

1

j �a j

1

2

u gives the 0-symbol whih oinides with the

1-symbol.

Shift at the 1-tube whih is generated by

1

2

(u+ 2w) and de�ned by

�
1

2

(u+2w)

(x) = x�

hu+ 2w;xi

4

(u+ 2w)

indues the map q 7!

4

4�q

, whih shows that 0 and 1 (and hene 1) lie in the

same slope lass. Hene there is exatly 1 slope lass.
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10.4. The ase

0

�

2

4

4

1

A

. Shifts at a and w yield the ase 2 from setion 6, hene

there are at most 2 slope lasses with representatives q = 0 and q =1, resp. The

anonial basis B

0

: a�w j a j u gives the 0-symbol

�

2

2

2

�

.

Hene there are preisely 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.5. The ase

�

2

2

2

�

. Shifts at a and s

1

(or w) yield the ase 5 from

setion 6, hene there are at most 3 slope lasses with representatives q = 0,

q = �1 and q = 1, resp. The anonial basis B

0

: �s

1

j �a j u gives the

0-symbol whih oinides with the 1-symbol. The anonial basis B

�1

: s

1

j

�2a+ 4s

1

�w j

1

2

(w � u) gives the �1-symbol

0

�

2

4

4

1

A

.

Shift at the 1-tube whih is generated by

1

2

(u+w) and de�ned by

�
1

2

(u+w)

(x) = x�

hu+w;xi

4

(u+w);

indues the map q 7!

1

2�q

, hene 1 and 0 lie in the same slope lass. Therefore

we have exatly 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a; b oddg;

f

a

b

j a 2 Z; b 2 N; a even; b oddg [ f

a

b

j a 2 Z; b 2 N; a odd; b eveng:

Furthermore, also the shifts at s

1

and

1

2

(u+w) yield these 2 slope lasses. Note

also that �(

1

2

(u+w)) = 1 and that the 1-symbol is

0

�

2

4

4

1

A

.

10.6. The ase

�

3

3

�

. Shifts at a and s

1

yield the ase 3 from setion 6, hene

there are at most 2 slope lasses with representatives q = 0 and q =1, resp. The

anonial basis B

0

: �s

1

j �a; �

2

a j

1

3

u gives the 0-symbol

0

�

3

3

3

1

A

.

Hene we get preisely 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a � 0mod 3g; f

a

b

j a 2 Z; b 2 N; a 6� 0mod 3g:

10.7. The ase

0

�

3

3

3

1

A

. Shifts at a and s

1

yield the ase 3 from setion 6, hene

there are at most 2 slope lasses with representatives q = 0 and q =1, resp. The

anonial basis B

0

: �s

1

j �a; �

2

a j u gives the 0-symbol

�

3

3

�

.

Hene there are exatly 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a � 0mod 3g; f

a

b

j a 2 Z; b 2 N; a 6� 0mod 3g:
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10.8. The ase

�

2 2

2 2

�

. Shifts at a and s

1

yield the ase 2 from setion 6,

hene there are at most 2 slope lasses with representatives q = 0 and q = 1,

resp. The anonial basis B

0

: �s

1

j �a j �a� 2�s

2

+w j

1

2

u gives the 0-symbol

0

�

2 2

2 2

2 2

1

A

. Therefore we have preisely 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.9. The ase

0

�

2 2

2 2

2 2

1

A

. Shifts at a and s

1

yield the ase 2 from setion 6,

hene there are at most 2 slope lasses with representatives q = 0 and q = 1,

resp. The anonial basis B

0

: s

1

� 2w j a j a � s

2

+ w j u gives the 0-symbol

�

2 2

2 2

�

. Hene there are exatly 2 slope lasses, namely

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.10. The ase

0

�

2 2

2 2

1 2

1

A

. Shifts at a and s

1

yield the ase 2 from setion 6,

therefore we have at most 2 slope lasses with representatives q = 0 and q = 1,

resp. The anonial basis B

0

: s

1

� w j a � s

2

+ w j a j u gives the 0-symbol

(2 2 j 2). Hene we have exatly 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.11. The ase (2 2 j 2). Shifts at a and s

1

yield the ase 4 from setion 6,

hene there are at most 2 slope lasses with representatives q = 0 and q = 1,

resp. The anonial basis B

0

: �s

2

j �a j 2�a� 2�s

1

+w j u gives the 0-symbol

0

�

2 2

2 2

1 2

1

A

. Hene there are preisely 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; b eveng; f

a

b

j a 2 Z; b 2 N; b oddg:

10.12. The ase

�

2 4

1 2

�

. Shifts at a and s

2

yield the ase 2 from setion 6,

therefore we have at most 2 slope lasses with representatives q = 0 and q = 1,

resp. The anonial basis B

0

: �s

2

j a� 2s

2

� �s

2

� �

2

s

2

+w j �a; �

2

a; �

3

a j

1

2

u

gives the 0-symbol

0

�

2 4

1 2

1 2

1

A

. Hene there are exatly 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.13. The ase

0

�

2 4

1 2

1 2

1

A

. Shifts at a and s

2

yield the ase 2 from setion 6,

hene there are at most 2 slope lasses with representatives q = 0 and q = 1.
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The anonial basis B

0

: ��

3

s

2

j 2a � 2s

1

� s

2

� �s

2

+ 2w j a; �a; �

2

a j u gives

the 0-symbol

�

2 4

1 2

�

. We get preisely 2 slope lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

11. Proof of Corollary 8.3

Let � 2 Aut V , and let q 2 Q suh that �(0) = q. Sine U ats transitively

on the slope lasses, there is u 2 U suh that u(q) = 0. We shall show that

u� = �

1

for some �

1

2 U , whih then will prove the orollary. Sine u�(0) = 0,

the element u� is represented by the matrix

�

1 0

 1

�

with  2 Z. As the analysis in

setion 10 shows, in eah tubular ase one of the �ve ases from setion 6 applies,

and the assertion is lear whenever the ase 1, 2 or 3 from setion 6 applies. Thus

it remains to show the assertion for the ases 10.2, 10.5 and 10.11. Taking into

aount that the element u� ats on eah slope lass one easily sees that  2 2Z

in these remaining ases, and then the assertion is also lear.
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